Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth
نویسندگان
چکیده
Control over the location, distribution, and size of quantum dots is essential for the engineering of next-generation semiconductor devices employing these remarkable nanostructures. We describe two approaches for achieving some level of this control in the InGaAs/GaAs material system. The first allows a degree of spatial selectivity by using strain differences in patterned InGaAs thin films as preferential sites for quantum dot growth. This method results in patterns of dots similar to those grown by self-assembly on an unpatterned InGaAs layer. The second method employs more conventional selective area epitaxy using a thin silicon dioxide mask patterned by electron beam lithography. This method allows control over the location of each quantum dot and variation of dot size through manipulation of the mask pattern. We present data on arrays of highly uniform InGaAs quantum dots fabricated in this manner. r 2004 Elsevier B.V. All rights reserved. PACS: 81.16.Dn; 81.16.Nd; 81.16.Rf; 85.35.Bf; 85.60.Jb
منابع مشابه
Selective Growth of InAs Quantum Dots by Metalorganic Chemical Vapor Deposition
We report results of both strain-driven surface segregation of indium from InGaAs thin films as well as selective area epitaxy of InAs quantum dots using these films. InAs segregation from an underlying InGaAs film allows for preferential growth of quantum dots when additional InAs is deposited. By using standard lithography techniques, a two-step selective growth process for quantum dots is ac...
متن کاملIn-situ mask removal in selective area epitaxy using metal organic chemical vapor deposition
We demonstrate an in situ mask removal technique for use in selective area epitaxy (SAE) by metal organic chemical vapor deposition (MOCVD). The mask material is native aluminum oxide (AlxOy) formed by wet thermal oxidation of a thin AlGaAs layer. The AlxOy layer is patterned using standard photolithography and wet chemistry outside of chamber. The AlxOy layer forms a high-quality, pin-holefree...
متن کاملOptical properties of artificial and self-organized InGaAs/GaAs quantum dots obtained on non-conventional GaAs surfaces
In the past few years, much attention has been devoted to the study of three-dimensional (3D) coherent islands structures referred to as quantum dots (QDs). These structures have mainly been obtained in high lattice-mismatched systems such as Ge/Si (100), InAs/GaAs (100), InGaAs/GaAs (100) and InP/InGaP (100). In such systems, nanoscaled islands organize themselves during growth, following the ...
متن کاملQuantum Dot Gate InGaAs FETs
This paper describes using wide energy gap lattice-matched II-VI layers, such as ZnSeTeZnMgSeTe, serving as a high-k gate dielectric for n-channel enhancement mode InGaAs field effect transistors (FETs). The thrust is to reduce interface states at the channel-gate insulator boundary while providing sufficient barrier height to confine the carriers in the channel created by inversion. In additio...
متن کاملRoom-Temperature Preperation of InGaAsN Quantum Dot Lasers Grown by MOCVD
An InGaAsN single-layer quantum dot ~QD! laser structure was grown on GaAs substrates by metalorganic chemical vapor deposition ~MOCVD!. The ridge-waveguide edge emitting laser diodes ~LD! were fabricated and characterized. We demonstrate room-temperature operation of InGaAsN QD lasers with an emission wavelength of 1078 nm. Electroluminescence spectra as a function of injection current showed ...
متن کامل